Assortative mating and self-fertilization differ in their contributions to reinforcement, cascade speciation, and diversification
نویسندگان
چکیده
Cascade speciation and reinforcement can evolve rapidly when traits are pleiotropic and act as both signal/cue in nonrandom mating. Here, we examine the contribution of two key traits-assortative mating and self-fertilization-to reinforcement and (by extension) cascade speciation. First, using a population genetic model of reinforcement we find that both assortative mating and self-fertilization can make independent contributions to increased reproductive isolation, consistent with reinforcement. Self-fertilization primarily evolves due to its 2-fold transmission advantage when inbreeding depression (d) is lower (d < 0.45) but evolves as a function of the cost of hybridization under higher inbreeding depression (0.45 < d < 0.48). When both traits can evolve simultaneously, increased self-fertilization often prohibits the evolution of assortative mating. We infer that, under specific conditions, mating system transitions are more likely to lead to increased reproductive isolation and initiate cascade speciation, than assortative mating. Based on the results of our simulations, we hypothesized that transitions to self-fertilization could contribute to clade-wide diversification if reinforcement or cascade speciation is common. We tested this hypothesis with comparative data from two different groups. Consistent with our hypothesis, there was a trend towards uniparental reproduction being associated with increased diversification rate in the Nematode phylum. For the plant genus Mimulus, however, self-fertilization was associated with reduced diversification. Reinforcement driving speciation via transitions to self-fertilization might be short lived or unsustainable across macroevolutionary scales in some systems (some plants), but not others (such as nematodes), potentially due to differences in susceptibility to inbreeding depression and/or the ability to transition between reproductive modes.
منابع مشابه
Experimental Evolution of Mating Discrimination in Budding Yeast
Assortative mating, when individuals of similar phenotypes mate, likely plays a key role in preventing gene flow during speciation. Reinforcement occurs when two previously geographically separated (allopatric) groups meet after having evolved partial postzygotic isolation; they are selected to evolve or enhance assortative mating to prevent costly intergroup matings that produce only maladapti...
متن کاملSexual dimorphism and adaptive speciation: two sides of the same ecological coin.
Models of adaptive speciation are typically concerned with demonstrating that it is possible for ecologically driven disruptive selection to lead to the evolution of assortative mating and hence speciation. However, disruptive selection could also lead to other forms of evolutionary diversification, including ecological sexual dimorphisms. Using a model of frequency-dependent intraspecific comp...
متن کاملSpatial self-structuring accelerates adaptive speciation in sexual populations
Questions: How does spatial self-structuring influence the waiting time until adaptive speciation in a population with sexual reproduction? Which mechanisms underlie this effect? Model: Using a spatially explicit individual-based multi-locus model of adaptive speciation, we investigate the evolution of a sexually reproducing population, with different levels of spatial self-structuring induced ...
متن کاملFrequency-dependent selection and the evolution of assortative mating.
A long-standing goal in evolutionary biology is to identify the conditions that promote the evolution of reproductive isolation and speciation. The factors promoting sympatric speciation have been of particular interest, both because it is notoriously difficult to prove empirically and because theoretical models have generated conflicting results, depending on the assumptions made. Here, we ana...
متن کاملStrong assortative mating by diet, color, size, and morphology but limited progress toward sympatric speciation in a classic example: Cameroon crater lake cichlids.
Models predict that sympatric speciation depends on restrictive parameter ranges, such as sufficiently strong disruptive selection and assortative mating, but compelling examples in nature have rarely been used to test these predictions. I measured the strength of assortative mating within a species complex of Tilapia in Lake Ejagham, Cameroon, a celebrated example of incipient sympatric adapti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 62 شماره
صفحات -
تاریخ انتشار 2016